Extensions 1→N→G→Q→1 with N=C3xQ16 and Q=C22

Direct product G=NxQ with N=C3xQ16 and Q=C22
dρLabelID
C2xC6xQ16192C2xC6xQ16192,1460

Semidirect products G=N:Q with N=C3xQ16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xQ16):1C22 = S3xC8.C22φ: C22/C1C22 ⊆ Out C3xQ16488-(C3xQ16):1C2^2192,1335
(C3xQ16):2C22 = D24:C22φ: C22/C1C22 ⊆ Out C3xQ16488+(C3xQ16):2C2^2192,1336
(C3xQ16):3C22 = C24.C23φ: C22/C1C22 ⊆ Out C3xQ16488+(C3xQ16):3C2^2192,1337
(C3xQ16):4C22 = S3xSD32φ: C22/C1C22 ⊆ Out C3xQ16484(C3xQ16):4C2^2192,472
(C3xQ16):5C22 = D48:C2φ: C22/C1C22 ⊆ Out C3xQ16484+(C3xQ16):5C2^2192,473
(C3xQ16):6C22 = C2xC8.6D6φ: C22/C2C2 ⊆ Out C3xQ1696(C3xQ16):6C2^2192,737
(C3xQ16):7C22 = Q16:D6φ: C22/C2C2 ⊆ Out C3xQ16484+(C3xQ16):7C2^2192,752
(C3xQ16):8C22 = C2xS3xQ16φ: C22/C2C2 ⊆ Out C3xQ1696(C3xQ16):8C2^2192,1322
(C3xQ16):9C22 = C2xD24:C2φ: C22/C2C2 ⊆ Out C3xQ1696(C3xQ16):9C2^2192,1324
(C3xQ16):10C22 = S3xC4oD8φ: C22/C2C2 ⊆ Out C3xQ16484(C3xQ16):10C2^2192,1326
(C3xQ16):11C22 = D8:15D6φ: C22/C2C2 ⊆ Out C3xQ16484+(C3xQ16):11C2^2192,1328
(C3xQ16):12C22 = C2xQ16:S3φ: C22/C2C2 ⊆ Out C3xQ1696(C3xQ16):12C2^2192,1323
(C3xQ16):13C22 = SD16:D6φ: C22/C2C2 ⊆ Out C3xQ16484(C3xQ16):13C2^2192,1327
(C3xQ16):14C22 = D8:11D6φ: C22/C2C2 ⊆ Out C3xQ16484(C3xQ16):14C2^2192,1329
(C3xQ16):15C22 = C6xSD32φ: C22/C2C2 ⊆ Out C3xQ1696(C3xQ16):15C2^2192,939
(C3xQ16):16C22 = C3xC16:C22φ: C22/C2C2 ⊆ Out C3xQ16484(C3xQ16):16C2^2192,942
(C3xQ16):17C22 = C6xC8.C22φ: C22/C2C2 ⊆ Out C3xQ1696(C3xQ16):17C2^2192,1463
(C3xQ16):18C22 = C3xD8:C22φ: C22/C2C2 ⊆ Out C3xQ16484(C3xQ16):18C2^2192,1464
(C3xQ16):19C22 = C3xD4oSD16φ: C22/C2C2 ⊆ Out C3xQ16484(C3xQ16):19C2^2192,1466
(C3xQ16):20C22 = C6xC4oD8φ: trivial image96(C3xQ16):20C2^2192,1461
(C3xQ16):21C22 = C3xD4oD8φ: trivial image484(C3xQ16):21C2^2192,1465

Non-split extensions G=N.Q with N=C3xQ16 and Q=C22
extensionφ:Q→Out NdρLabelID
(C3xQ16).1C22 = SD16.D6φ: C22/C1C22 ⊆ Out C3xQ16968-(C3xQ16).1C2^2192,1338
(C3xQ16).2C22 = SD32:S3φ: C22/C1C22 ⊆ Out C3xQ16964-(C3xQ16).2C2^2192,474
(C3xQ16).3C22 = D6.2D8φ: C22/C1C22 ⊆ Out C3xQ16964(C3xQ16).3C2^2192,475
(C3xQ16).4C22 = S3xQ32φ: C22/C1C22 ⊆ Out C3xQ16964-(C3xQ16).4C2^2192,476
(C3xQ16).5C22 = Q32:S3φ: C22/C1C22 ⊆ Out C3xQ16964(C3xQ16).5C2^2192,477
(C3xQ16).6C22 = D48:5C2φ: C22/C1C22 ⊆ Out C3xQ16964+(C3xQ16).6C2^2192,478
(C3xQ16).7C22 = C24.27C23φ: C22/C2C2 ⊆ Out C3xQ16964(C3xQ16).7C2^2192,738
(C3xQ16).8C22 = C2xC3:Q32φ: C22/C2C2 ⊆ Out C3xQ16192(C3xQ16).8C2^2192,739
(C3xQ16).9C22 = Q16.D6φ: C22/C2C2 ⊆ Out C3xQ16964(C3xQ16).9C2^2192,753
(C3xQ16).10C22 = D8.9D6φ: C22/C2C2 ⊆ Out C3xQ16964-(C3xQ16).10C2^2192,754
(C3xQ16).11C22 = D12.30D4φ: C22/C2C2 ⊆ Out C3xQ16964(C3xQ16).11C2^2192,1325
(C3xQ16).12C22 = D8.10D6φ: C22/C2C2 ⊆ Out C3xQ16964-(C3xQ16).12C2^2192,1330
(C3xQ16).13C22 = C6xQ32φ: C22/C2C2 ⊆ Out C3xQ16192(C3xQ16).13C2^2192,940
(C3xQ16).14C22 = C3xC4oD16φ: C22/C2C2 ⊆ Out C3xQ16962(C3xQ16).14C2^2192,941
(C3xQ16).15C22 = C3xQ32:C2φ: C22/C2C2 ⊆ Out C3xQ16964(C3xQ16).15C2^2192,943
(C3xQ16).16C22 = C3xQ8oD8φ: C22/C2C2 ⊆ Out C3xQ16964(C3xQ16).16C2^2192,1467

׿
x
:
Z
F
o
wr
Q
<